AWS Certified Advanced Networking Specialty ANS-C01 Q181-Q190

  1. AWS Certified Advanced Networking Specialty ANS-C01 Q1-Q10
  2. AWS Certified Advanced Networking Specialty ANS-C01 Q11-Q20
  3. AWS Certified Advanced Networking Specialty ANS-C01 Q21-Q30
  4. AWS Certified Advanced Networking Specialty ANS-C01 Q31-Q40
  5. AWS Certified Advanced Networking Specialty ANS-C01 Q41-Q50
  6. AWS Certified Advanced Networking Specialty ANS-C01 Q51-Q60
  7. AWS Certified Advanced Networking Specialty ANS-C01 Q61-Q70
  8. AWS Certified Advanced Networking Specialty ANS-C01 Q71-Q80
  9. AWS Certified Advanced Networking Specialty ANS-C01 Q81-Q90
  10. AWS Certified Advanced Networking Specialty ANS-C01 Q91-Q100
  11. AWS Certified Advanced Networking Specialty ANS-C01 Q101-Q110
  12. AWS Certified Advanced Networking Specialty ANS-C01 Q111-Q120
  13. AWS Certified Advanced Networking Specialty ANS-C01 Q121-Q130
  14. AWS Certified Advanced Networking Specialty ANS-C01 Q131-Q140
  15. AWS Certified Advanced Networking Specialty ANS-C01 Q141-Q150
  16. AWS Certified Advanced Networking Specialty ANS-C01 Q151-Q160
  17. AWS Certified Advanced Networking Specialty ANS-C01 Q161-Q170
  18. AWS Certified Advanced Networking Specialty ANS-C01 Q171-Q180
  19. AWS Certified Advanced Networking Specialty ANS-C01 Q181-Q190
  20. AWS Certified Advanced Networking Specialty ANS-C01 Q191-Q200
  21. AWS Certified Advanced Networking Specialty ANS-C01 Q201-Q210
  22. AWS Certified Advanced Networking Specialty ANS-C01 Q211-Q221

Please Subscribe to Access the Premium Content

The remaining premium contents are locked. Please subscribe to the monthly newsletter to unlock the content for free.

Loading...

181. A development team is building a new web application in the AWS Cloud. The main company domain, example.com, is currently hosted in an Amazon Route 53 public hosted zone in one of the company’s production AWS accounts.
The developers want to test the web application in the company’s staging AWS account by using publicly resolvable subdomains under the example.com domain with the ability to create and delete DNS records as needed. Developers have full access to Route 53 hosted zones within the staging account, but they are prohibited from accessing resources in any of the production AWS accounts.
Which combination of steps should a network engineer take to allow the developers to create records under the example com domain? (Choose two.)

A. Create a public hosted zone for example com in the staging account
B. Create a staging example.com NS record in the example.com domain. Populate the value with the name servers from the staging.example.com domain. Set the routing policy type to simple routing.
C. Create a private hosted zone for staging example com in the staging account.
D. Create an example com NS record in the staging example.com domain. Populate the value with the name servers from the example.com domain. Set the routing policy type to simple routing.
E. Create a public hosted zone for staging.example.com in the staging account.

Answer

B, E


182. A company plans to deploy a two-tier web application to a new VPC in a single AWS Region. The company has configured the VPC with an internet gateway and four subnets. Two of the subnets are public and have default routes that point to the internet gateway. Two of the subnets are private and share a route table that does not have a default route.
The application will run on a set of Amazon EC2 instances that will be deployed behind an external Application Load Balancer. The EC2 instances must not be directly accessible from the internet. The application will use an Amazon S3 bucket in the same Region to store data. The application will invoke S3 GET API operations and S3 PUT API operations from the EC2 instances. A network engineer must design a VPC architecture that minimizes data transfer cost.
Which solution will meet these requirements?

A. Deploy the EC2 instances in the public subnets. Create an S3 interface endpoint in the VPC. Modify the application configuration to use the S3 endpoint-specific DNS hostname.
B. Deploy the EC2 instances in the private subnets. Create a NAT gateway in the VPC. Create default routes in the private subnets to the NAT gateway. Connect to Amazon S3 by using the NAT gateway.
C. Deploy the EC2 instances in the private subnets. Create an S3 gateway endpoint in the VPSpecify die route table of the private subnets during endpoint creation to create routes to Amazon S3.
D. Deploy the EC2 instances in the private subnets. Create an S3 interface endpoint in the VPC. Modify the application configuration to use the S3 endpoint-specific DNS hostname.

Answer

C


183. A company has two AWS accounts one for Production and one for Connectivity. A network engineer needs to connect the Production account VPC to a transit gateway in the Connectivity account. The feature to auto accept shared attachments is not enabled on the transit gateway.
Which set of steps should the network engineer follow in each AWS account to meet these requirements?

A. 1. In the Production account: Create a resource share in AWS Resource Access Manager for the transit gateway. Provide the Connectivity account ID. Enable the feature to allow external accounts
2. In the Connectivity account: Accept the resource.
3. In the Connectivity account: Create an attachment to the VPC subnets.
4. In the Production account: Accept the attachment. Associate a route table with the attachment.

B. 1. In the Production account: Create a resource share in AWS Resource Access Manager for the VPC subnets. Provide the Connectivity account ID. Enable the feature to allow external accounts.
2. In the Connectivity account: Accept the resource.
3. In the Production account: Create an attachment on the transit gateway to the VPC subnets.
4. In the Connectivity account: Accept the attachment. Associate a route table with the attachment.

C. 1. In the Connectivity account: Create a resource share in AWS Resource Access Manager for the VPC subnets. Provide the Production account ID. Enable the feature to allow external accounts.
2. In the Production account: Accept the resource.
3. In the Connectivity account: Create an attachment on the transit gateway to the VPC subnets.
4. In the Production account: Accept the attachment. Associate a route table with the attachment.

D. 1. In the Connectivity account: Create a resource share in AWS Resource Access Manager for the transit gateway. Provide the Production account ID Enable the feature to allow external accounts.
2. In the Production account: Accept the resource.
3. In the Production account: Create an attachment to the VPC subnets.
4. In the Connectivity account: Accept the attachment. Associate a route table with the attachment.

Answer

D


184. A company is running multiple workloads on Amazon EC2 instances in public subnets. In a recent incident, an attacker exploited an application vulnerability on one of the EC2 instances to gain access to the instance. The company fixed the application and launched a replacement EC2 instance that contains the updated application.
The attacker used the compromised application to spread malware over the internet. The company became aware of the compromise through a notification from AWS. The company needs the ability to identify when an application that is deployed on an EC2 instance is spreading malware.
Which solution will meet this requirement with the LEAST operational effort?

A. Use Amazon GuardDuty to analyze traffic patterns by inspecting DNS requests and VPC flow logs.
B. Use Amazon GuardDuty to deploy AWS managed decoy systems that are equipped with the most recent malware signatures.
C. Set up a Gateway Load Balancer. Run an intrusion detection system (IDS) appliance from AWS Marketplace on Amazon EC2 for traffic inspection.
D. Configure Amazon Inspector to perform deep packet inspection of outgoing traffic.

Answer

A


185. A company deploys a new web application on Amazon EC2 instances. The application runs in private subnets in three Availability Zones behind an Application Load Balancer (ALB). Security auditors require encryption of all connections. The company uses Amazon Route 53 for DNS and uses AWS Certificate Manager (ACM) to automate SSL/TLS certificate provisioning. SSL/TLS connections are terminated on the ALB.
The company tests the application with a single EC2 instance and does not observe any problems. However, after production deployment, users report that they can log in but that they cannot use the application. Every new web request restarts the login process.
What should a network engineer do to resolve this issue?

A. Modify the ALB listener configuration. Edit the rule that forwards traffic to the target group. Change the rule to enable group-level stickiness. Set the duration to the maximum application session length.
B. Replace the ALB with a Network Load Balancer. Create a TLS listener. Create a new target group with the protocol type set to TLS Register the EC2 instances. Modify the target group configuration by enabling the stickiness attribute.
C. Modify the ALB target group configuration by enabling the stickiness attribute. Use an application-based cookie. Set the duration to the maximum application session length.
D. Remove the ALB. Create an Amazon Route 53 rule with a failover routing policy for the application name. Configure ACM to issue certificates for each EC2 instance.

Answer

C


186. A company recently migrated its Amazon EC2 instances to VPC private subnets to satisfy a security compliance requirement. The EC2 instances now use a NAT gateway for internet access. After the migration, some long-running database queries from private EC2 instances to a publicly accessible third-party database no longer receive responses. The database query logs reveal that the queries successfully completed after 7 minutes but that the client EC2 instances never received the response.
Which configuration change should a network engineer implement to resolve this issue?

A. Configure the NAT gateway timeout to allow connections for up to 600 seconds.
B. Enable enhanced networking on the client EC2 instances.
C. Enable TCP keepalive on the client EC2 instances with a value of less than 300 seconds.
D. Close idle TCP connections through the NAT gateway.

Answer

C


187. A company uses AWS Direct Connect to connect its corporate network to multiple VPCs in the same AWS account and the same AWS Region. Each VPC uses its own private VIF and its own virtual LAN on the Direct Connect connection. The company has grown and will soon surpass the limit of VPCs and private VIFs for each connection.
What is the MOST scalable way to add VPCs with on-premises connectivity?

A. Provision a new Direct Connect connection to handle the additional VPCs. Use the new connection to connect additional VPCs.
B. Create virtual private gateways for each VPC that is over the service quota. Use AWS Site-to-Site VPN to connect the virtual private gateways to the corporate network.
C. Create a Direct Connect gateway, and add virtual private gateway associations to the VPCs. Configure a private VIF to connect to the corporate network.
D. Create a transit gateway, and attach the VPCs. Create a Direct Connect gateway, and associate it with the transit gateway. Create a transit VIF to the Direct Connect gateway.

Answer

D


188. A network engineer is designing a hybrid architecture that uses a 1 Gbps AWS Direct Connect connection between the company’s data center and two AWS Regions: us-east-1 and eu-west-1. The VPCs in us-east-1 are connected by a transit gateway and need to access several on-premises databases. According to company policy, only one VPC in eu-west-1 can be connected to one on-premises server. The on-premises network segments the traffic between the databases and the server.
How should the network engineer set up the Direct Connect connection to meet these requirements?

A. Create one hosted connection. Use a transit VIF to connect to the transit gateway in us-east-1. Use a private VIF to connect to the VPC in eu-west-1. Use one Direct. Connect gateway for both VIFs to route from the Direct Connect locations to the corresponding AWS Region along the path that has the lowest latency.
B. Create one hosted connection. Use a transit VIF to connect to the transit gateway in us-east-1. Use a private VIF to connect to the VPC in eu-west-1. Use two Direct Connect gateways, one for each VIF, to route from the Direct Connect locations to the corresponding AWS Region along the path that has the lowest latency.
C. Create one dedicated connection. Use a transit VIF to connect to the transit gateway in us-east-1. Use a private VIF to connect to the VPC in eu-west-1. Use one Direct Connect gateway for both VIFs to route from the Direct Connect locations to the corresponding AWS Region along the path that has the lowest latency.
D. Create one dedicated connection. Use a transit VIF to connect to the transit gateway in us-east-1. Use a private VIF to connect to the VPC in eu-west-1. Use two Direct Connect gateways, one for each VIF, to route from the Direct Connect locations to the corresponding AWS Region along the path that has the lowest latency.

Answer

D


189. A company has deployed an application in a VPC that uses a NAT gateway for outbound traffic to the internet. A network engineer notices a large quantity of suspicious network traffic that is traveling from the VPC over the internet to IP addresses that are included on a deny list. The network engineer must implement a solution to determine which AWS resources are generating the suspicious traffic. The solution must minimize cost and administrative overhead.
Which solution will meet these requirements?

A. Launch an Amazon EC2 instance in the VPC. Use Traffic Mirroring by specifying the NAT gateway as the source and the EC2 instance as the destination. Analyze the captured traffic by using open-source tools to identify the AWS resources that are generating the suspicious traffic.
B. Use VPC flow logs. Launch a security information and event management (SIEM) solution in the VPC. Configure the SIEM solution to ingest the VPC flow logs. Run queries on the SIEM solution to identify the AWS resources that are generating the suspicious traffic.
C. Use VPC flow logs. Publish the flow logs to a log group in Amazon CloudWatch Logs. Use CloudWatch Logs Insights to query the flow logs to identify the AWS resources that are generating the suspicious traffic.
D. Configure the VPC to stream the network traffic directly to an Amazon Kinesis data stream. Send the data from the Kinesis data stream to an Amazon Kinesis Data Firehose delivery stream to store the data in Amazon S3. Use Amazon Athena to query the data to identify the AWS resources that are generating the suspicious traffic.

Answer

C


190. A company has its production VPC (VPC-A) in the eu-west-1 Region in Account 1. VPC-A is attached to a transit gateway (TGW-A) that is connected to an on-premises data center in Dublin, Ireland, by an AWS Direct Connect transit VIF that is configured for an AWS Direct Connect gateway. The company also has a staging VPC (VPC-B) that is attached to another transit gateway (TGW-B) in the eu-west-2 Region in Account 2.
A network engineer must implement connectivity between VPC-B and the on-premises data center in Dublin.
Which solutions will meet these requirements? (Choose two.)

A. Configure inter-Region VPC peering between VPC-A and VPC-B. Add the required VPC peering routes. Add the VPC-B CIDR block in the allowed prefixes on the Direct Connect gateway association.
B. Associate TGW-B with the Direct Connect gateway. Advertise the VPC-B CIDR block under the allowed prefixes.
C. Configure another transit VIF on the Direct Connect connection and associate TGW-B. Advertise the VPC-B CIDR block under the allowed prefixes.
D. Configure inter-Region transit gateway peering between TGW-A and TGW-B. Add the peering routes in the transit gateway route tables. Add both the VPC-A and the VPC-B CIDR block under the allowed prefix list in the Direct Connect gateway association.
E. Configure an AWS Site-to-Site VPN connection over the transit VIF to TGW-B as a VPN attachment.

Answer

B, D


Leave a Comment

Your email address will not be published. Required fields are marked *


Scroll to Top